
AFRL-IF-RS-TR-1998-62
Final Technical Report
May 1998

OBJECT ABSTRACTOR ADA 9X

Xinotech Research, Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. B123

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19980622 136
The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

DTK) QUALITY INSPECTED 1

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-62 has been reviewed and is approved for publication.

APPROVED: uZ^^^ lc^ l^^f^
/JAMES R. MILLIGAN ^

Project Engineer

FOR THE DIRECTOR:
NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

OBJECT ABSTRACTOR ADA 9X

Romel Rivera
Subash Shankar
Susan Seaholm

Contractor: Xinotech Research, Inc.
Contract Number: F30602-94-C-0175
Effective Date of Contract: 30 June 1994
Contract Expiration Date: 30 June 1997
Program Code Number: 6D10
Short Title of Work: Object Abstractor Ada 9X
Period of Work Covered: Jun 94 -Jun 97

Principal Investigator: Romel Rivera
Phone: (612)379-3844

AFRL Project Engineer: James Milligan
Phone: (315)330-3013

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by James Milligan, AFRL/IFTD, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE
OMB No. 0704-0188

Public reporting burden lor this collection of information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data sources, gathering and maintaining the deta needed, and completing and renewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, D'rrectorate for mformatiin
Operations end Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Redaction Project (0704-01881, Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE

OBJECT ABSTRACTOR ADA 9X

2. REPORT DATE

May 1998
3. REPORT TYPE AND DATES COVERED

Final Jun 94 - Jun 97

6. AUTHORS)

Romel Rivera, Subash Shankar, and Susan Seaholm

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES)

Xinotech Research, Inc.
1313 Fifth Street Southeast
Minneapolis, MN 55414

9. SPONSORING/MONITORIMG AGENCY NAMEIS) AND ADDRESS(ES)

AFRL/IFTD
525 Brooks Road
Rome MY 13441-4505

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

C - F30602-94-C-0175
PE -61101E
PR -B132
TA -01
WU-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORINGIM0NIT0RING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-62

AFRL Project Engineer: James R. Milligan/IFTD/(315) 330-3013

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes the work done by Xinotech Research on the Xinotech metalanguage-based object abstractor for ADA
9X program transformation. The goal of this project was to developed a knowledge-based metalanguage-based tool to
support object abstraction for forward and reverse engineering of ADA programs. The capabilities of the object abstractor
include those for improving software analysis, software understanding, software reengineering, and automatic program
transformation. The tools developed under this effort support automatic translation from other languages to ADA, automatic
generation of graphical architectural models from source code, user-assisted refinement and tuning of the graphical
architectural model, and automatic transformation of the source code to the final model.

14. SUBJECT TERMS

ADA, Software Transformation, Reverse Engineering, Architecture, Reengineering, Code
Generation
17. SECURITY CLASSIFICATION

OF REPORT

 UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

20
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSJDI0R, Oct 94

TABLE OF CONTENTS

SECTION PAGE NUMBER

0. Abstract l
1. Object Abstractor i
1.1 Object Extractor 3
1.1.1 XML Ada Extractor 3
1.1.2 Object Prospector 3
1.1.3 Pattern Abstractor 3

1.1.4 XPAL 00 Library Ada 9X 4
2. Extended Ada 9X Philosophy 4
3. Conclusions & Future Research 5
4. References 6

0. Abstract

This report describes the work done by Xinotech Research on the Xinotech Metalanguage-
Based Object Abstractor for Ada 9X Program Transformation. The goal of this project was to
develop a knowledge-based metalanguage-based tool to support object abstraction for forward
and reverse engineering of Ada programs. The goals of the Object Abstractor include software
analysis, software understanding, software reengineering, and automatic program
transformation.

Our tools are based on the ARMY Missile Command Software Engineering Directorate (MICOM
SED) methodology for reengineering. Xinotech is working very closely with MICOM.
The MICOM SED methodology provides a well-defined sequential process for creating an
organized object-oriented Ada architecture from legacy source code. This sequential process is
implemented in the steps of the Architectural Transformation phase (OA-ARCH) of the Object
Abstractor. These steps are described explicitly in Chapter 4 of the manual for the Object
Abstractor [3]. A copy of the manual is enclosed with this report.

The tools developed in this project support automatic translation from other languages to Ada,
automatic generation of graphical architectural models from source code, user-assisted
refinement and tuning of the graphical architectural model, and automatic transformation of
the source to the final model.

1. Object Abstractor (SOW 4.1.1)

The objectives of the Xinotech Object Abstractor are to: 1) provide flexible, evaluative support
for the changing ARMY MICOM SED methodology, 2) provide extensive libraries of rules
("plans") to support automated extraction of a variety of new architectural models from the
original sources, 3) support visual manipulation of the proposed models, 4) provide
comprehensive transformation libraries to support automatic transformation of the original
Ada sources into the new architectural model, 5) have a product that generates correct
compilable Ada code, and 6) comfortably handle files of 50K lines.

The Object Abstractor provides the following functions:
• Language-based environment: Program analysis and transformation is based on the Object

Abstractor's knowledge of the syntax and semantics of Ada.
• Knowledge-based environment: Program analysis and transformation is also supported by

the Object Abstractor's knowledge of rules outside the language in use, such as rules for
object-oriented design, domain-specific programming, architecture-specific support,
programming standards, and reengineering methodologies.

• Language-independent environment: The Object Abstractor supports multiple languages and
applications. All the language and outside-language knowledge is specified in XML, the
Xinotech Metalanguage.

• Concept recognition, abstraction, and transformation: Pattern abstraction is used to support
the recognition of implied concepts in the source code, and their transformation to higher-
level models. Pattern abstraction is supported through an XML component called XPAL,
the Xinotech Pattern Abstraction Language.

• Support for reengineering methodologies: Libraries of analyses, guidelines, and
transformations can be organized to support specific methodologies.

• Support for multiple models (e.g. design and implementation): Multiple models of the same
system can be maintained and compared.

• Multiple textual and graphical views: When a view is modified, all other views are
updated. The Object Abstractor supports program and dictionary navigation across
graphical and textual views and through declaration dependencies. Graphical and textual
views also support levels of abstraction.

• Integrated forward- and reengineering: The Object Abstractor supports both interactive
development as well as the reengineering analysis and transformation of a changing source
code system.

These functions are made accessible to the user through three major activities available from
the Object Abstractor: guidelining, modeling, and transformation. Guidelining is the ability to
verify a software system's adherence to a standard. The Object Abstractor can verify adherence
to design philosophies, programming disciplines, and metrics. Reports may be generated to
document violations and the user may browse the corresponding positions in the source code.

Modeling involves analysis of source code and application of strategies for creating abstract
representations of relevant relationships within the code. The Object Abstractor can also
display the resulting models graphically, and allow the user to fine-tune the model or propose
an alternative model. Transformation of source code may be carried out by the Object
Abstractor, to reflect the new or proposed model, or to force adherence to guidelines which have
been violated. These activities are described in greater detail in Chapter 1 of the Object
Abstractor manual [3].

Under this contract, Xinotech achieved the following accomplishments:
• The Development of the Ada 95 Object Abstractor, for program sizes in the 30K lines of code

range found in the test cases used.
• The use, testing, and evaluation of the Object Abstractor by the ARMY MICOM SED. This

group applied the Object Abstractor to transform the architecture of legacy code translated
from Jovial to Ada. It was determined that the tool successfully applied complex, global
transformations to the source code, consistent with MICOM's methodology for re-
engineering of Ada. The graphical modeling and turning of architectures was found
particularly useful and powerful. The resulting code was evaluated as reaching "98%" of
its desired state; engineers would modify about 2% to achieve compilation or other goals.
Further lessons learned from this project are deferred to section 3.

• The pre-release of the Object Abstractor on a demo basis to selected commercial entities
such as Bill Hodges of the Boeing (STARS) group. The Object Abstractor has not been used
extensively yet in commercial environments, and has not been evaluated formally by this
group.

• The commercialization of the Object Abstractor to other markets and languages, including
in particular the COBOL Year 2000 problem.

• The specification of TypeL, a language for type prospecting and evolution to support type-
based software reengineering. TypeL is described further in section 1.1.2.

• Demonstration of the Object Abstractor at the ARPA SIS Environment Days in January 1995,
at the ARPA SISTO Symposium in August 1995, and the EDCS Demo Days in July 1997.

Particular notable features of components of the Object Abstractor are discussed below in the
appropriate sections.

1.1 Object Extractor (SOW 4.1.1.1)

/././ XML Ada Extractor (SOW 4.1.1.1.1)

The XML Ada Extractor was implemented. The Extractor extracts syntactic and semantic information from
Ada source code. This capability is based upon a description of the syntax and semantics of the Ada
language written in XML, the Xinotech MetaLanguage. The latter language is used to describe each
element of the Ada programming language, including its external syntax or "views" and its semantic
attributes, in an abstract grammar for the language. The XML description of the Ada language is then used
by Xinotech's tools. For example, the Composer uses the description of Ada to provide formatting,
interactive browsing and intelligent editing of Ada source code. As source modules are imported into the
Composer, they are parsed and the Extractor extracts and records syntactic and semantic attributes. This
information may in turn by used in the analyses of the Object Abstractor. The role of XML for Ada is
described further in the attached document "Xinotech for Ada" [4].

1.1.2 Object Prospector (Object Identifier) (SOW 4.1.1.1.2)

The Object Prospector identifies objects in Ada source, and provides for their graphical display and
manipulation. Major functions include the automatic identification of candidate objects in Ada source code,
use of a type-based object prospecting algorithm, graphical display of the Ada software architecture^
graphical manual tuning of the architecture, and type prospecting and evolution.

The Object Prospector is compatible with the MICOM Snider-Lewis methodology as well. This
methodology establishes an Ada architecture by identifying objects based upon "read/write" relationships
between procedures and data items. A state data item is defined as a data item which must retain its value
after the scope of any procedures which modify it have been exceeded. State data items are protected within
objects or packages, along with procedures which must access them. The methodology provides steps to
prepare code for subsequent identification of objects, and for iterative analysis and definition of objects and
relationships between procedures and data items . For more detail, refer to Chapter 4 of the manual for the
Object Abstractor [3].

To support type-based reengineering, Xinotech specified and implemented a language called TypeL (Type
Prospecting and Evolution Language). Recognizing that a fundamental paradigm for the reengineering of
legacy software is as a type evolution problem, TypeL allows the user to specify rules that describe data
structure evolution. Major classes of rules include:

Type prospecting: finding types that correspond to typeless declarations, even in untyped languages.
Data structure definition transformation: Correction of deficient data structures through transformation
to new improved target types.
Data structure reference transformation: Context-dependent upgrading of references to data structures
whose definitions were changed.
Operation transformation: Transformation of operations on updated data structures.

Data conversion: Migration of data associated with updated data structures.

1.1.3 Pattern Abstractor or XPAL Evaluator (SOW 4.1.1.1.3)

The Xinotech environment is structured around the concept of pattern abstraction: the process of
automatically condensing or abstracting low-level source code patters found in existing software into high-
level program concepts. XPAL, the Xinotech Pattern Abstraction Language, is a declarative constraint

language used to express these program patterns and their transformations. XPAL is a component of XML,
the Xinotech Meta-Language, which is a language for specifying the abstract grammar, external syntax
(views), and semantics of languages. The relationships between the Xinotech languages are depicted in the
attached figure.

As an example, consider implementing a guideline which recommends avoiding the use of "go to"
statements. XPAL may be used to describe programming practices involving such statements, for example
using a "go to" to jump out of a loop. XML would be used to describe each language element, including
the syntax of the "gotoStmt", and that of the "loopStmt". An XPAL plan could then be written to
describe a "go to" found within the body of a looping construct, by expressing the constraint that the go to
is contained within a loop: "contains(loopStmt, gotoStmt)". XPAL provides a syntax for describing such
constraints. The XPAL Evaluator identifies occurrences in the source code which match the constraints.

XPAL also provides syntax for describing changes which should be made to the program tree; for example
the "gotoStmt" as identified could be eliminated from the program tree, and the "loopStmt" and its body
modified to provide the logical equivalent of the original code. These modifications would be expressed in
terms of the XML descriptions of the relevant language elements.

As part of this project, Xinotech made a number of improvements to the XPAL language and its
implementation.

A. Improvements to the XPAL Language

Major improvements to the XPAL language include new data types, new predefined control procedures,
and new predefined functions. The syntax of the language was enhanced for readability, clarity, and ease of
use.

B. Improvements to the Implementation or Evaluator

A number of changes were made to improve the XPAL implementation. Major areas of change include
faster execution, reduced memory usage, garbage collection, and XPAL profiling. Problems that became
evident when scaling the technology were corrected.

1.1.4 XPAL Object-Oriented Library for Ada 9X (SOW 4.1.1.1.4)

Xinotech explored and implemented features related to a number of issues concerning Ada 9X. These
include updating of the Xinotech Ada 9X specification, transformations to support reengineering to target
object-oriented designs, and the adaptation of Hollingsworth's principles to Ada 9X. The latter principles
are described in the Ph.D. dissertation of Hollingsworth [2], which describes a methodology for producing
highly reusable components using Ada. The methodology is organized into a collection of numbered
principles. The Xinotech library provides guidelines and transformations organized into the same numbered
set of principles.

2. Extended Ada 9X Philosophy Library (SO W 4.1.2)

A set of transformations was created to provide consistency with Ada 9X philosophy: these transformations
go beyond simple language compliance and help to produce code which takes advantage of special features
of the language. For example, guidelines describe methods for turning procedures and functions into object-
oriented packages, and variant types into tagged records which are more extensible object types. Other
transformations take advantage of access subprogram types and abstract subprogram declarations. Yet others
aid in reorganizing program decomposition, by splitting out child library units from existing Ada 83

packages. Guidelines supporting the philosophy of Ada 9X were derived from the document "Ada 95
Rationale" [1]. Xinotech has also created an additional set of guidelines which identify code in Ada 83
which is not compliant with Ada 9X. Criteria for non-compliance come from Appendix X of the above
document [1], entitled "Upward Compatibility".

Additionally, Xinotech researched a number of program transformations supporting the reengineering of
legacy Ada code to Ada 9X. Particular transformations studied include: identification of Ada 83 monitor
tasks, transformation of Ada 83 monitor tasks to Ada 9X protected objects, and translation of an Ada 9X
object-oriented subset to Ada 83. These transformations provided further information about Ada 9X
philosophy; some were implemented in the library for the recognition and transformation of monitor tasks.

3. Conclustions and Future Research Possibilities

The technology as described above is operational. It produces consistent, predictable results when applied
to source code. The greatest benefit is the time saved via automated extraction of models and
transformations of source code. Compared to manual approaches, the use of the Object Abstractor involves
less human effort, is more uniform and predictable, and is less error-prone. The application of the
technology is practical in that the resulting source code is readable and the process relatively user-friendly.
We conclude that the project has met its forecasted objectives with the approaches selected and as
implemented.

The Army MICOM group found the automatic transformations to be helpful for improving the architecture
of Ada code, and recommends they be extended to allow for additional steps in the process or other
methods. When applied to Ada translated from legacy Jovial, it would be helpful to have first transformed
the Jovial code where hardware-specific optimizations were used, including to "pack" or "overlay" items in
memory. This in turn produces fewer lines of Ada code which provide a better basis for the re-architecturing
efforts. Conditioning of legacy code prior to translation is an area of activity at Xinotech; however re-
architecturing efforts should be concentrated on the target language, as concluded by MICOM.'

This group also found the graphical models and transformations to be particularly "powerful and
impressive". It is suggested for future work that it be easier to select or "grab" nodes within the graph, and
to "unselect" items without selecting others. It would also be helpful to be able to separate items
graphically at a finer level of granularity; some of the graphical operations for removing items were deemed
overly "heavy-handed", producing too many changes at once. The user should be able to remove a single
type declaration from a body into a package specification, then to another package, and then to reverse the
procedure if desired. These improvements are left for future work.

During the project, name resolution schemes were implemented based on the semantics of the Ada
language. An attempt was made to use the ASIS libraries for name resolution instead. The ASIS libraries
provide an interface to semantic information derived by Ada compilers. It proved difficult to use these
libraries, in part because they were poorly supported by the compiler vendors and contained bugs and
errors. The name resolution schemes developed by Xinotech proved adequate for the task.

The greatest need for improvement involves scaleability. This was also the conclusion of the ARMY
MICOM group. For larger applications, the time for analyses and transformations should be reduced. The
technology should be able to handle larger code modules, and be tested further for robustness across a wide
variety of Ada applications. The interactive capabilities for producing graphical object-oriented models
should be enhanced. In addition, features supporting collaborative use by large teams should be improved.
These goals are to be addressed in future projects with some of the current collaborators.

4. References

[1] Ada 95 Rationale, The Language, The Standard Libraries. Intermetrics, Inc. Cambridge,
Massachusetts, 1995.

[2] Joseph E. Hollingsworth. Software Component Design-for-Reuse: A Language-Independent Discipline
Applied to Ada. Ph.D. Dissertation, Ohio State University, 1992.

[3] Xinotech Research. Object Abstractor. Minneapolis, Minnesota, 1997.

[4] Xinotech Research. Xinotech for Ada. Minneapolis, Minnesota, 1995.

DISTRIBUTION LIST

addresses number
of copies

JAMES MILLIGAN
AFRL/IFTO
52:5 BROOKS ROAD
ROME NY 13441-4505

XINQTECH RESEARCH,INC.
1313 FIFTH STREET SOUTHEAST
MINNEAPOLIS** MN 55414

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-QCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE
FT. 3ELVOIR, VA 22060-6218

0944

AOVANCEO RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

RELIABILITY ANALYSIS
201 MILL ST.
ROME NY 13440-8200

CENTER

ATTN: GWEN NGUYEN
GIDEP
P.O. BOX 8000
CORONA CA 91718-8000

DL-1

ÄFIT ACADEMIC LIBRARY/LOSE
2950 P STREET
AREA B, ?>LOG 642
WRIGHT-PATTEPSON AF3 OH 45433-7765

ATTN: TECHNICAL DOCUMENTS CENTER
OL AL HSC/HRG
2698 G STREET
WRIGHT-PATTERSON AFB CH 45433-7604

US ARMY SSDC
P.O. SOX 1500
ATTN: CSSD-IM-PA
HUNTSVILLE AL 35807-3801

NAVAL AIR WARFARE CENTER
WEAPONS DIVISION
CODE 4BL0OOD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

SPACE & NAVAL WARFARE SYSTEMS CMD
ATTN: PMW163-1 C*. SKIANO)RM 1044ft
53560 HULL ST.
SAN DIEGO, CA 92152-5002

COMMANDER, SPACE L NAVAL WARFARE
SYSTEMS COMMAND CCODE 32)
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

CDR, US ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFORMATION CTP
ATTN: AMSMI-RO-CS-R, DOCS
REDSTONE ARSENAL AL 35899-5241

ADVISORY GROUP ON ELECTRON DEVICES
SUITE 500
1745 JEFFERSON DAVIS HIGHWAY
ARLINGTON VA 22202

REPORT COLLECTION, CIC-14
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 97545

DL-2

AEOC LIBRARY
TECHNICAL REPORTS FILE
100 KIMOEL DRIVE, SUITE C
ARNOLD AFS TN 37339-3211

11

COMMANDER
USAISC
ASHC-IWD-L,
FT HUACHUCA

SLOG 61801
AI 85613-5000

US DEPT OF TRANSPORTATION LIBRARY
FBlOAf M-457, RM 930
800 INDEPENDENCE AVE, SW
WASH OC 2 2 591

ÄWS TECHNICAL LIBRARY
359 BUCHANAN STREET, RM.
SCOTT AF3 IL 62225-5118

427

AFIWC/MSY
102 HALL 8LVO,
SAN ANTONIO TX

ST£ 315
73243-7016

SOFTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIVERSITY
4500 FIFTH AVENUE
PITTSBURGH PS 15213

NSA/CSS
Kl
FT MEADS MD 20755-6000

ATTN: OM CHAUHAN
OCMC WICHITA
271 WEST THIRD STREET NORTH
SUITE 6000
WICHITA KS 67202-1212

AFRL/VSQS-TL <LIBRARY)
5 WRIGHT STREET
HANSCOM AF3 MA 01731-3004

DL-3

HTTN" EILEEN LADUKc/0460
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

OUSDCP)/DTSA/OUTD
ATTN: PATRICK G. SULLIVAN, JR,
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

OL-4

